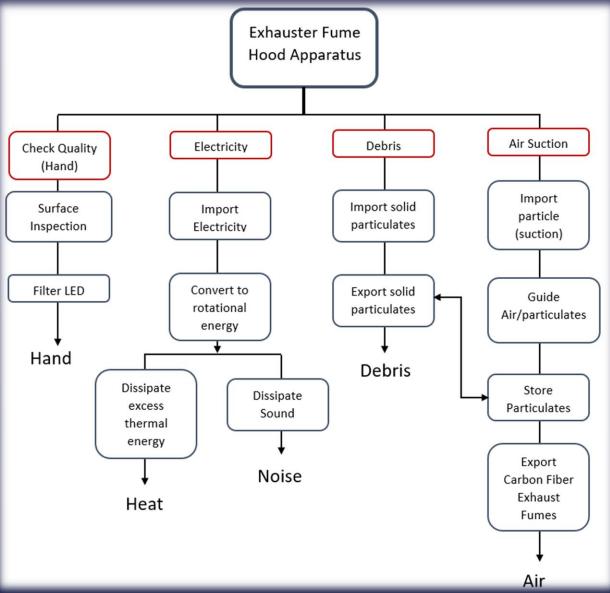


NAU FUME HOOD

27<sup>TH</sup> FEBRUARY ZOZO

TALAL ALSHAMMARI, ZACH BELL, BRYCE DAVIS, SHIRLEY HATCHER

NORTHERN ARIZONA UNIVERSITY


# Project Description

- Lab fume hood for NAUBiomechatronics lab
- Exoskeletons to improve mobility for walking impairments
- Provide safety measures against carbon fiber hazards
- Compatible with existing exhauster
- oWorkspace must be completely safe to fabricate carbon fiber components by neutralizing epoxy fumes and filtering fine carbon fiber particles during sanding operations



Figure 1: Exhauster Fan

#### Functional Decomposition



### Concept Generation

- Client and Staff Meetings led to ideas for concept generation
- ODr. Zachary Lerner and Dr. Alexander Trevas
- Fume Hood with safety features



Figure 3: PVC Fume Hood

#### Concept Generation-Features

- Pressure Sensor- Arduino circuit board
- oLED Sensor
- Portability within lab
- Temperature kill switch
- Motorized front panel
- Possible hose replacement
- Carbon fiber specific filter



Figure 4: Pressure Transducers

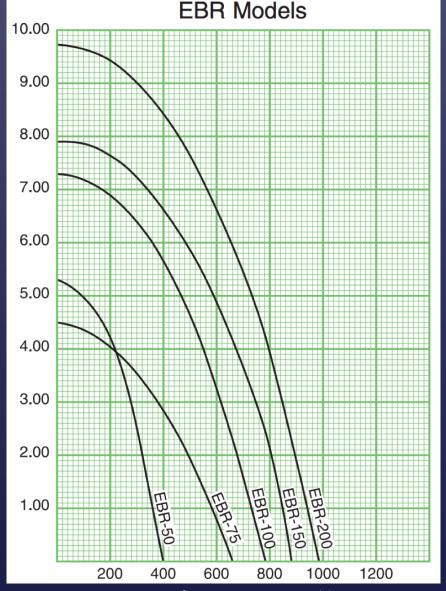
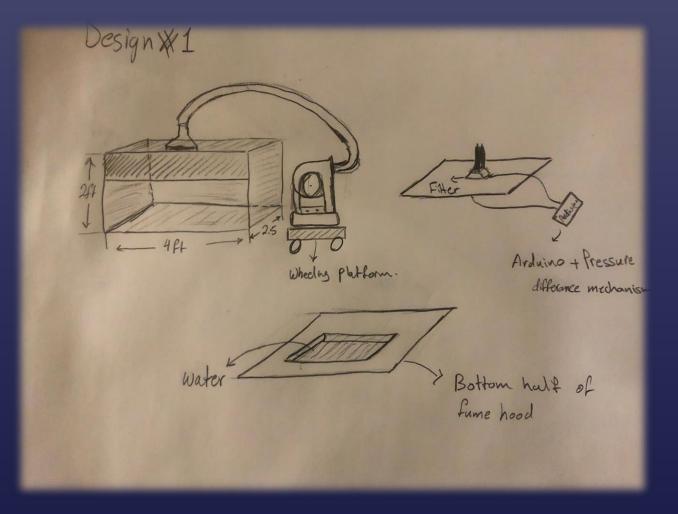



Figure 5: Arduino Coding

#### Concept Generation-Performance Curves


- Exhauster's model used is EBR-50. Which is designed with 10 ft hose.
- Maximum pressure drop = 5.3"
- Maximum flow rate = 395 CFM (Cubic feet per minute).
- Equation that relates Flow rate & Pressure drop:

Flow Rate = Nozzle Area \*  $\sqrt{\frac{\Delta p}{\rho_{Air}}}$  (Eqn 1)



# Design Alternative 1

- Mix use of water and air filter
- Arduino + PressureTransducer mechanism



Zach

# Design Alternative 2

- ORemoveable air filter
- Enclosed along 3 walls

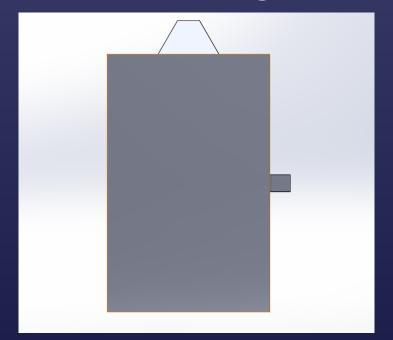



Figure 8: Design alternative #2 Cad model-side

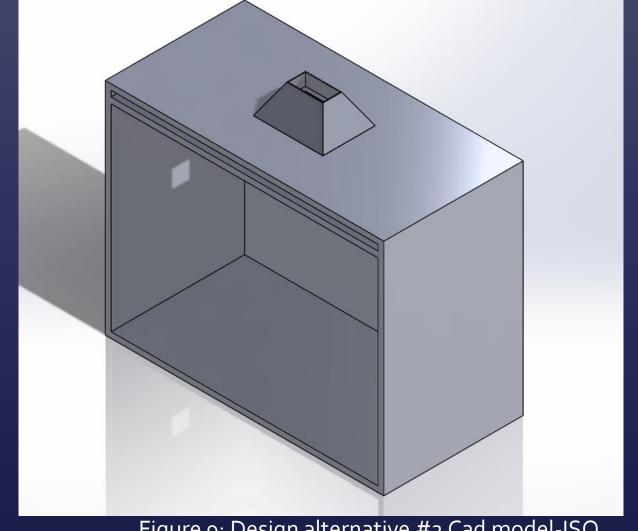



Figure 9: Design alternative #2 Cad model-ISO

# Design Alternative 3

- OAir Filter with emergency filtration system
- Back panel fans for additional filtration

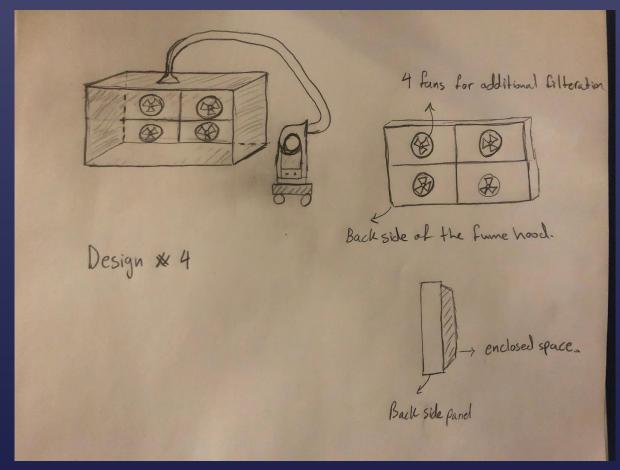



Figure 10: Design alternative #3

#### Concept Generation-Decision Matrix

Purpose & Procedure: Evaluate three design alternatives (DA) based on fulfillment of ER's. Scored each DA for all ER's.
 Results: Our decision matrix shows numerically that design 2 is the most viable option in conjunction with our engineering requirements

Table 1: Decision Matrix

|                  |           | Designs   |       |           |       |           |       |           |       |  |
|------------------|-----------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|--|
|                  |           | Design #1 |       | Design #2 |       | Design #3 |       | Design #4 |       |  |
| Criteria         | Weighting | Score     | Total | Score     | Total | Score     | Total | Score     | Total |  |
|                  |           | 1-10      |       | 1-10      |       | 1-10      |       | 1-10      |       |  |
| Filtering System | 30%       | 8         | 24    | 8         | 24    | 7         | 21    | 9         | 27    |  |
| Portability      | 15%       | 4         | 6     | 6         | 9     | 6         | 9     | 5         | 7.5   |  |
| Safety           | 25%       | 8         | 20    | 9         | 22.5  | 7         | 17.5  | 9         | 22.5  |  |
| Durability       | 15%       | 6         | 9     | 8         | 12    | 8         | 12    | 7         | 10.5  |  |
| Cost             | 15%       | 9         | 13.5  | 7         | 10.5  | 8         | 12    | 6         | 9     |  |
| Total            | 100%      |           | 72.5  |           | 78    |           | 71.5  |           | 76.5  |  |

# Budget Analysis- Bill of Materials

Table 2: Preliminary Bill of Materials

| Component                  | Cost Per Unit<br>(\$/unit) | Amount<br>Per Unit | Total<br>Material Cost | Purchase         |  |
|----------------------------|----------------------------|--------------------|------------------------|------------------|--|
| Spectre tapered air filter | \$ 20.63                   | 1                  | \$20.63                | Amazon           |  |
| Arduino Uno Rev 3          | \$22.00                    | 1                  | \$22                   | Store.Arduino.cc |  |
| 0.187x24x96" PVC sheet     | \$72.48                    | 1                  | \$72.48                | eplastics        |  |
| Buffalo tools dolly 1000lb | \$18.32                    | 1                  | \$18.32                | Home Depot       |  |
| rating                     |                            |                    |                        |                  |  |
| 0.187x48x48 PVC Sheet      | \$72.48                    | 1                  | \$72.48                | Eplastics        |  |
| Pressure Transducer        | Donated                    |                    |                        | Dr. Trevas       |  |
| LED Arduino light          | \$0.26                     | 3                  | \$0.78                 | Store.arduino.cc |  |
| Photo Resistor             | \$0.95                     | 6                  | \$5.70                 | Store.arduino.cc |  |
| 10 Kohm resistor           | \$0.036                    | 10                 | \$0.36                 | Store.arduino.cc |  |
| 221-ohm resistor           | \$0.27                     | 1                  | \$0.27                 | Store.arduino.cc |  |
| 4" worm drive clamps       | \$1.71                     | 2                  | \$3.42                 | Home Depot       |  |
| 36" wide polypropylene     | \$356.76                   | 1                  | \$356.76               | US plastic       |  |
| fume hood                  |                            |                    |                        |                  |  |
| Total Cost                 |                            |                    | \$573.40               |                  |  |

#### Budget Analysis-Monetary Distribution

- From the Bill of Materials we determined that 100% of cost would be considered for building/manufacture of the fume hood system
- If necessary, replacement parts would be a simple fraction of the total cost as we expect minimal replacement.
  - Tapered Air Filter \$20.63 (completely washable and reusable)
  - Worm Drive Clamps \$3.42 (may lose tension over time)
  - Arduino boards \$22.00 (life span of boards are 10-15 years)
  - Sensors and lights ~\$7 (assuming each sensor/ resistor were replaced simultaneously)
- Our initial total budget was \$400 provided by the Biomechatronics lab, however if necessary we will be able to acquire more funding from the lab.

# Questions??

#### References

• [1] Cincinnati Fan, "Portable Fume Exhauster-Blower," [Online]. Available:

https://www.cincinnatifan.com/catalogs/FumeExhausters-1207.pdf.

•

[2] Fantech, "Learning the fan performance curve," [Online]. Available: <a href="https://www.youtube.com/watch?v=HgVmA6\_fKw8">https://www.youtube.com/watch?v=HgVmA6\_fKw8</a>.